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Abstract
Dip isogons, drawn on the profile section of a fold by linking the points of equal dip on the inner and outer arcs, can be arranged in a rosette
by displacing the isogons without changing their orientation until the mid-point of each isogon becomes the common point of intersection of all
isogons. The end points of isogons in the rosette trace a characteristic curve that defines the fold geometry. This curve is a circle in parallel folds,
an ellipse in flattened parallel folds, and it reduces to a pair of points in ‘‘similar’’ folds. Since isogons deform as material lines during flattening,
the characteristic curve, namely, the ellipse, directly represents the strain ellipse in flattened parallel folds. The method is tested successfully on
several examples of natural flattened parallel folds. The ‘‘isogon rosette’’ method allows representation of a given fold by a point on the Rseq

plot, where Rs and q are the two-dimensional strain ratio and the angle between the maximum principal strain and the fold axial trace, respectively.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural geologists have long used the shapes of folds for
determining the amount of shortening due to folding in layered
rocks (de Sitter, 1958; Ramsay, 1962; Ramsay, 1967, pp. 411e
415; Ramsay, 1974). Amongst a large variety of natural fold
shapes, the flattened parallel folds are most ideally suited for
estimation of strain that is accommodated during the later, flat-
tening phase of a fold’s history. The profile sections of such
folds are characterized by a greater curvature of the inner
arc compared to that of the outer arc, and a greater thickness
of layering in the hinge zone compared to that in the fold
limbs (Fig. 1).

Buckling is a well known mechanism for the development
of parallel folds in a competent layer enclosed in an incompe-
tent medium of sufficient viscosity contrast (Ramberg, 1961;
Ramsay, 1967, p. 386; Hudleston, 1973a). Flattening, i.e., a ho-
mogeneous strain superimposed on a parallel, or Class 1B
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fold, modifies its geometry into a flattened parallel or a Class
1C fold (Ramsay, 1967, p. 411). Estimates of flattening strain
in Class 1C folds allow restoration of parallel fold shapes that
in turn can be used to decipher the amount of shortening due to
buckling. The estimate of buckle shortening, in turn, allows
restoration of original length and thickness of undistorted
beds, provided the layer-parallel shortening during the initial
stages of folding is insignificant. Such restorations are of use
to sedimentologists, structural geologists, petroleum geolo-
gists and stratigraphers.
2. Existing methods

The t0aea method and the fea method have been used
most extensively for strain determination in Class 1C folds
(Ramsay, 1967, p. 413; Hudleston, 1973b; Naha and Halybur-
ton, 1977). The two methods are based on variations in the
normalized layer thickness t0a, and the angle between the iso-
gon and normal to the tangents f, with respect to the limb dip
angle a at different points on a folded layer. These conventional
methods, however, entail a large number of linear and/or
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Fig. 1. Profile section of a flattened parallel (Class 1C) fold. The dip isogons i0,

i30 and i60, are respectively obtained by joining the points at which the lines t0,

t30 and t60 are tangents on the outer and the inner arcs of the fold.
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angular measurements and matching of plots of these mea-
surements with sets of standard curves.

As the t0aea and the fea plots represent the variation of
relative thickness of different portions of a fold limb by
a curved line, these methods are not very useful for graphical
representation of a large number of folds. Furthermore, the
methods are best suited to those Class 1C folds that are flat-
tened, such that the angle q between the axial trace of the
fold and the maximum principal strain direction is 0�. This
condition is, however, not met in many natural folds since ob-
lique flattening of folds is common in ductile shear zones and
transpressive regimes (Srivastava and Srivastava, 1988). Al-
though the inverse-thickness method (Lisle, 1992), the Mohr
circle method and the Wellman method (Wellman, 1962;
Shah and Srivastava, 2006) provide the strain estimates irre-
spective of the oblique nature of flattening, they too require
a large number of linear and angular measurements, and/or
geometrical constructions.

The dip isogons are the lines joining the points of equal dip
on the outer arc and the inner arc of a folded layer (Fig. 1). In
this article, we first give a new method that is based on arrang-
ing the dip isogons into a rosette which can then be used for
strain estimation in flattened folds. We then extend the scope
of the method by devising a unified scheme of fold classifica-
tion and by suggesting a simple two-dimensional plot for rep-
resenting each fold as a single data point.

3. The ‘‘isogon rosette’’ method

The method is based on two principles: (i) all dip isogons in
a Class 1B fold are of equal length, and (ii) the isogons behave
as material lines during flattening. Consider the profile section
of a Class 1B fold with a few dip isogons drawn at different
angles of limb dip (Fig. 2a). If we displace the isogons without
changing their respective orientations, and arrange them so
that they all intersect at the mid-point of each isogon
(Fig. 2a), we produce a rosette in which the end points of
the isogons trace a characteristic curve. The curve for a Class
1B fold is a circle with its centre located at the common point
of intersection of isogons and a diameter equal to the common
length of the isogons (circle below fold in Fig. 2a).

If we now flatten the Class 1B fold into a Class 1C fold by
superimposing a homogenous strain, such that the angle q be-
tween the major axis of the strain ellipse and the fold axial
trace is 0�, the isogons experience changes in length and ori-
entation. The circle, circumscribing the isogon rosette of the
original Class 1B fold (Fig. 2a), transforms into an ellipse
that circumscribes the isogon rosette of the Class 1C fold
(Fig. 2b). The axial ratio and orientation of the ellipse records
the two-dimensional strain ratio Rs and the principal strain ori-
entation in terms of angle q. With increasing amounts of flat-
tening, the variably oriented dip isogons increasingly rotate
into parallelism with the maximum principal strain direction.
Eventually, at very high strains, the Class 1B fold modifies
to a near ‘‘similar’’ or Class 2 fold, where all isogons become
equal in length and lie approximately parallel to the axial
trace. The characteristic curve defined by the end points of
the isogon rosette reduces to a pair of points in the Class 2
folds (Fig. 2c).

The superimposition of homogeneous strain at an angle q

equal to 90� modifies a parallel, or Class 1B, fold into a Class
1A fold (Fig. 2d). If the superimposition of homogeneous
strain onto the parallel fold is obliquely inclined to the fold ax-
ial trace, i.e., 0� < q < 90�, then the parallel fold is modified
into an obliquely flattened parallel fold, which may conform
to the geometry of the Class 1C, or Class 1A fold, depending
upon whether q is close to 0� or 90�, respectively (Fig. 2e). On
the down-plunge profile views, the obliquely flattened parallel
folds can be further classified into Class þ1C and Class �1C,
or Class þ1A and Class �1A folds, depending upon whether
the maximum principal strain is shifted anticlockwise or
clockwise relative to the fold axial trace (Fig. 2e). In summary,
the strain ellipse representing the flattening suffered by folds is
directly given by the ellipse that circumscribes the isogon ro-
sette in all Class 1C and Class 1A folds, irrespective of the
value of the angle q.

The shape of the characteristic curve passing through the
end points of the isogons in the rosette can also be used to
restore the pre-flattened fold shape using widely available
computer graphics software (Srivastava and Shah, 2006).
The procedure involves the following three steps: (i) import
the image of the flattened fold, together with the isogon ro-
sette and the characteristic elliptical curve (Fig. 3a); (ii)
group and rotate these objects until the major axis (x) of
the ellipse becomes vertical (Fig. 3b); and (iii) stretch the
objects by dragging the handle 4 in Fig. 3b to the right until
the ellipse becomes a circle (Fig. 3c). This restores the
shape of pre-flattened fold, which in this example is a paral-
lel fold (Fig. 3c).
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4. Examples

Hudleston (1973a) distinguishes three types of Class 1C
folds to illustrate the scope and the limitations of the t0ae
a and the fea methods. The tangents at the hinge points of
the outer and inner arcs are parallel in the Type 1 and Type
Class 1B

X

Class 

a b
1

7

8

2

6

Fig. 3. Restoration of the pre-flattened fold shape. (a) image of the flattened parallel

axis of the ellipse. (b) Rotation of the objects in (a) such that the x direction beco

stretching the handle 4 in (b) to the right until the ellipse transforms into a circle.
2 folds, whereas the two tangents are non-parallel in Type 3
folds. A Class 1C fold is classified as Type 1, or Type 2, de-
pending upon whether or not the tangents are orthogonal to
the fold axial trace, respectively.

To test the validity of the ‘‘isogon rosette’’ method, we have
estimated the superimposed flattening strains for a large
Class 1BX

1C

3

5

4

c

fold along with the isogon rosette and the circumscribing ellipse. x is the major

mes vertical. 1e8 are dragging handles. (c) Restored fold shape obtained by
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number of published and unpublished images of the three dif-
ferent types of Class 1C folds; we have compared these results
to those obtained using the t0aea and the fea methods (Fig. 4,
Table 1). Type 1 folds yield consistent results using all three
methods. Type 2 folds cannot be analysed using the t0ae
a method, and the application of the fea method on these
folds is tedious and prone to error. No estimate of strain can
be made using the t0aea or the fea method in Type 3 folds.
By contrast, the ‘‘isogon rosette’’ method efficiently deter-
mines strain in all three types of Class 1C folds (Table 1).

5. Flattening in Class 3 folds

The estimation of flattening strain for Class 3 folds is based
on the assumption that the buckling of a multilayer sequence,
consisting of an incompetent layer sandwiched between two
competent layers, produces a Class 3B fold in the incompetent
layer. The existing definition of a Class 3B fold (Zagor�cev,
1993) requires its association with a Class 1B fold, such that
the layer thicknesses along the axial trace of the Class 1B and
the Class 3B folds are same. Based on this definition, we give
a simple geometrical criterion for classification of Class 3 folds.

Consider a Class 3 fold with h1 and h2 as the hinge points
located on the inner and the outer arcs, respectively (Fig. 5a).
While keeping the outer arc fixed, move the inner arc upwards
along the axial trace until the hinge point h1 shifts to the point
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Fig. 4. Examples of the profile sections of Class 1C folds, tested by t0aea, fea an
h3, such that h1h2 ¼ h2h3 (Fig. 5b). This interchange of the
outer and inner arcs transforms the Class 3 fold into a Class
1 fold (Fig. 5b). If the geometries of the transformed folds
are Class 1A, 1B or 1C this implies that the original Class 3
fold is a Class 3A, 3B or 3C fold, respectively.

The superimposition of a homogeneous flattening strain on
a Class 3B fold at an angle q equal to 0� or 90� modifies its
geometry into a Class 3C or 3A fold, respectively (Fig. 5c,d).
For a Class 3B fold, the curve through the end points of the
isogon rosette is characteristically a rectangular hyperbola of
unit axial ratio, y2/a2 � x2/a2 ¼ 1, such that the centre of hy-
perbola coincides with the common point of intersection of
the isogons, with its transverse axis parallel to the fold axial
trace (Fig. 5a). As the flattening modifies the Class 3B fold
into a Class 3A or Class 3C fold, the rectangular hyperbola
transforms into a hyperbola, y2/a2 � x2/b2 ¼ 1 (a s b), which
has two non-orthogonal asymptotes (Fig. 5c,d).

The axial ratio of the non-rectangular hyperbola obtained
from the isogon rosette in the Class 3A or Class 3C folds di-
rectly gives the strain suffered by the original Class 3B fold
during the process of flattening. The maximum principal strain
parallels the transverse axis of the hyperbola for Class 3A
folds, whereas it parallels the conjugate axis of the hyperbola
for Class 3C folds (Fig. 5c,d). In all obliquely flattened Class
3B folds, the major axis of the strain ellipse is inclined
with respect to the transverse axis of the hyperbola, i. e.,
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d the ‘‘isogon rosette’’ method (Table 1). Types 1 to 3 are defined in the text.



Table 1

Results obtained using different methods

Fold No.

in Fig. 4

Method

t0aea 4ea Isogon rosette

Rs Rs Rs q RMS

1 2.56 2.85 2.52 0.00 0.016

2 2.27 2.22 2.23 0.00 0.021

3 1.35 1.38 1.36 0.00 0.006

4 1.30 1.33 1.29 0.00 0.007

5 2.08 2.33 2.03 0.00 0.021

6 2.13 2.38 2.11 0.00 0.012

7 2.36 1.96 2.42 0.00 0.003

8 1.54 1.54 1.54 0.00 0.001

9 2.44 1.56 1.86 0.00 0.002

10 2.17 2.44 1.9 0.00 0.005

11 NA 1.91 1.63 �24.50 0.004

12 NA 1.16 1.41 9.38 0.006

13 NA 4.39 3.15 �2.89 0.006

NA 2.40

14 NA 1.90 1.65 24.50 0.007

15 NA 2.38 1.88 �12.20 0.010

16 NA 1.88 1.77 �13.40 0.016

17 NA 1.74 1.64 1.42 0.005

18 NA 1.41 1.27 �2.40 0.007

19 NA 1.64 1.65 �2.40 0.006

20 NA 1.42 1.45 6.55 0.097

21 NA 1.17 1.19 �5.10 0.005

22 NA 2.02 1.35 �5.20 0.004

23 NA 1.78 1.53 6.09 0.007

24 NA 2.22 2.21 0.62 0.003

25 NA 2.49 1.80 4.50 0.006

26 NA 3.27 3.17 �2.25 0.007

NA 4.90

27 NA 6.7 6.81 �4.40 0.003

NA 10.5

28 NA NA 1.18 19.30 0.003

29 NA NA 1.36 19.30 0.003

30 NA NA 1.62 �9.70 0.009

31 NA NA 1.72 �2.64 0.007

32 NA NA 1.27 �10.00 0.004

33 NA NA 1.06 �0.83 0.006

Rs, strain ratio; q, angle between the maximum principal strain and fold axial

trace; RMS, root mean square error in the best-fit ellipse obtained by algebraic

fitting. Source for folds: 1 and 2, Hudleston (1973b); 3e6, Dietrich (1969); 7e
26, unpublished; 27, Ding and James (1985); 28e33, unpublished. NA, not

applicable.
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0� < q < 90�. In practice, the flattening in Class 3 folds can
easily be determined using any software, such as the Matlab,
which fits the hyperbola through the end points of isogons in
the rosette and gives the axial ratio and orientation of the strain
ellipse in terms of the axial ratio and orientation of the
hyperbola.
6. Use of stretched isogons for fold classification

It has long been accepted that a classification of fold shapes
is most appropriately done using differences between the cur-
vatures of the outer and inner arcs of the folded layers (Ram-
say, 1967, p. 365; Treagus, 1982; Bastida, 1993). In practice,
the curvature difference is expressed by the degree of conver-
gence or divergence of isogons towards fold axial trace.
Hence, strongly convergent, moderately convergent, weakly
convergent, parallel and divergent isogon patterns characterize
Class 1A, Class 1B, Class 1C, Class 2, and Class 3 folds, re-
spectively. In the ‘‘isogon rosette’’ method, the nature and ori-
entation of the curve drawn through the end points of the
isogons defines the fold geometry (Figs. 2 and 5).

7. Point representation of folds

The problem of representation of a large number of folds on
a single t0aea or fea plot was first highlighted by Bastida
(1993), who proposed a method for representation of a fold
limb by the ratio of the slopes of two segments of the curvilin-
ear plot on the t0aea graph. This method for point representa-
tion of a fold limb, however, requires more measurements and
calculations than the t0aea method.

Since different fold shapes correspond to different flatten-
ing strain ellipses, the parameters Rs and q can be used for
classification and for graphical representation of a fold shape
as a point on a Rseq plot (Fig. 6a). The classification scheme
assumes that: (i) Class 1C and Class 3C folds form by flatten-
ing of Class 1B and Class 3B folds, respectively, at an angle q

equal to 0�, whereas Class 1A and Class 3A folds form by flat-
tening of these folds at an angle q equal to 90�; and (ii)
obliquely flattened Class 1C, or Class 3C folds form by flatten-
ing at 0� < q < 90�.

The left and right end points of the horizontal axis on the
Rseq plot denote Class 1B and Class 3B folds, respectively
(Fig. 6a). ‘‘Similar’’ or Class 2 folds plot at the mid-point of
the horizontal axis and they correspond to infinitely high
amount of flattening of Class 1B or Class 3B folds (Ramsay,
1962). All other points on the horizontal axis represent either
Class 1C or Class 3C folds flattened at an angle q, equal to 0�.
Class 1A and Class 3A folds plot on the left- and the right-
hand vertical axes, respectively. Obliquely flattened folds
plot in upper or lower half of the diagram, depending upon
whether the maximum principal strain direction rotates in
a clockwise or anticlockwise sense with respect to the fold ax-
ial trace, respectively (Fig. 6a). The point representation of all
the fold examples in Fig. 4 is shown in Fig. 6a,b.

The concentric arcs, and the radial lines emerging from the
two end points of the horizontal axis are, respectively, the
curves of constant strain ratio Rs and the lines of constant an-
gle q (Fig. 6a). The intersection of the Rs curve and the q lines
defines the point that represents a unique fold geometry.

8. Discussion and conclusions

The ‘‘isogon rosette’’ method provides the most straightfor-
ward technique that allows estimates of two-dimensional
strain to be made for flattened folds of Classes 1A, 1C, 3A
and 3C, irrespective of the value of angle q. It only requires
drawing a minimum of three isogons and fitting a curve
through the end points of isogons in the rosette. The method
is free from the errors in identification of precise hinge points,
or defining a datum for angular measurements, and impor-
tantly does not require any linear or angular measurements,
another source of potential error. Amongst all the available
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methods that can decipher strain in an obliquely flattened fold
(Lisle, 1992; Shah and Srivastava, 2006; Srivastava and Shah,
2006), the ‘‘isogon rosette’’ method is the most rapid, easy-
to-use and accurate. Although the method is related to the
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method of Lisle (1997), it is conceptually simpler and much
more direct.

The ‘‘isogon rosette’’ method is, however, not free from as-
sumptions and limitations. For example, it assumes that the flat-
tening follows the buckling, whereas these two processes can
operate simultaneously during the folding of rocks. In addition,
the method assumes that the shape of the fold prior to flattening
conforms to that of a parallel fold irrespective of the fact
whether the internal strain inside the parallel fold is accommo-
dated by the tangential longitudinal strain model, the flexural-
slip model, or by some combination of these two models
(Ramsay, 1967, pp. 391e392; Bastida et al., 2005). For this rea-
son, the method cannot distinguish between flattened tangential
longitudinal strain folds and flattened flexural-slip folds.

By using the ‘‘isogon rosette’’ method, any fold can be
represented by a point whose coordinates are defined by two
parameters, Rs and q. The Rseq plot has a much broader scope
of applications compared to existing schemes for graphical
representation of fold geometry. It is particularly useful for
representing the geometry of a large number of folds.

Acknowledgements

This work is funded by the DST Grant of the Government
of India. Aditi Pal helped us in testing the method on several
examples of folds and Anandroop Ray made the program for
searching the best-fit ellipse. Erudite reviews from R.E. Holds-
worth, R.J. Lisle and P.W.G. Tanner improved the quality of
the paper considerably. Discussions with R.C. Mittal, Nibir
Mandal, Ashok Dubey and P. Bhattacharya were helpful dur-
ing the revision of the manuscript.

References

Bastida, F., 1993. A new method for the geometrical classification of large data

sets of folds. Journal of Structural Geology 15, 69e78.

Bastida, F., Aller, J., Bobillo-Ares, N.C., Tomil, N.C., 2005. Fold geometry:

a basis for their kinematical analysis. Earth Science Reviews 70, 129e164.

de Sitter, L.U., 1958. Structural Geology. McGraw-Hill, New York, 551 pp.



450 D.C. Srivastava, J. Shah / Journal of Structural Geology 30 (2008) 444e450
Dietrich, J.H., 1969. Origin of cleavage in folded rocks. American Journal of

Science 267, 155e165.

Ding, P., James, P.R., 1985. Structural evolution of the Harts range arcs and its

implication for the development of the Arunta block, Central Australia.

Precambrian Research 27, 251e276.

Hudleston, P.J., 1973a. Fold morphology and some geometrical implications of

theories of fold development. Tectonophysics 16, 1e46.

Hudleston, P.J., 1973b. The analysis and interpretation of minor folds devel-

oped in the Moine rocks of Monar, Scotland. Tectonophysics 17, 89e132.

Lisle, R.J., 1992. Strain estimation from flattened buckle folds: Journal of

Structural Geology 14, 369e371.

Lisle, R.J., 1997. A fold classification scheme based on a polar plot of inverse

layer thickness. In: Sengupta, S. (Ed.), Evolution of Geological Structures

in Micro- to Macro-Scales. Chapman and Hall, London, pp. 323e339.

Naha, K., Halyburton, R., 1977. Structural pattern and strain history of a super-

posed fold system in the Precambrian of central Rajasthan, India. Precam-

brian Research 4, 39e84.

Ramberg, H., 1961. Relationship between concentric longitudinal strain and

concentric shear strain during folding of homogeneous sheets of rocks.

American Journal of Science 259, 382e390.
Ramsay, J.G., 1962. The geometry and mechanics of formation of ‘‘similar’’

type folds. Journal of Geology 70, 309e327.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New

York, 568 pp.

Ramsay, J.G., 1974. Development of chevron folds. Bulletin of the Geological

Society of America 85, 1741e1754.

Shah, J., Srivastava, D.C., 2006. Strain estimation from flattened parallel folds:

application of the Wellman method and the Mohr circle. Geological Mag-

azine 143, 243e247.

Srivastava, D.C., Shah, J., 2006. A rapid method for strain estimation from

flattened parallel folds. Journal of Structural Geology 28, 1e8.

Srivastava, D.C., Srivastava, P., 1988. Modification of parallel folds by

progressive shearing parallel to the axial plane. Tectonophysics 156,

167e173.

Treagus, S.H., 1982. A new isogon-cleavage classification and its application

to natural and model fold studies. Geological Journal 17, 49e64.

Wellman, H.W., 1962. A graphical method for analyzing fossil distortion

caused by tectonic deformation. Geological Magazine 99, 348e352.

Zagor�cev, I.S., 1993. The geometrical classification and distribution of fold

types in natural rocks. Journal of Structural Geology 15, 243e251.


	The ‘‘isogon rosette’’ method for rapid estimation of strain in flattened folds
	Introduction
	Existing methods
	The ‘‘isogon rosette’’ method
	Examples
	Flattening in Class 3 folds
	Use of stretched isogons for fold classification
	Point representation of folds
	Discussion and conclusions
	Acknowledgements
	References


